当然,这是可以通过技术手段解决的。
利用足够强大的大统一场将这些氢原子牢牢锁死,便可以解决这个问题。
问题也就出在这边,这需要更高的操作精度。
以先前材料研究中心表现出的强相互作用力和大统一场操控技术来看,这个难度明显有些超标了。
简单地来说,便是输出已经够了,操作跟不上。
因此,根据吕永昌原本的计划,用氢原子构建的致密材料,是吕永昌心中的下一代装甲材料——质量更轻,强度更大。
再往上,也就是吕永昌的最终目标。818小说
致密中子装甲。
……
计划赶不上变化。
尤其是在材料相关的研究领域,这句话更是被展现地淋漓尽致。
第一批致密氦材料刚在实验室中成功诞生,丁成旺那边就传来了好消息。
根据吕永昌的教导,丁成旺成功对强相互作用力材料制作装置进行了改良。
或许是因为运气因素,又或许是天赋和努力的共同影响。
丁成旺的最终成果远远超过了吕永昌的想象——强相互作用力操控装置,以及大统一场控制装置的操控精度都得到了较大的提升。
虽然致密中子材料的极限尺寸还是如同吕永昌的预测,被大统一场强度限制在了十厘米见方,但操控精度提升的大统一场控制装置却达到了致密氢材料的制造门槛。
于是……
致密氦成为了人联历史上最短命的一款高强度材料。
出生即退休。
……
在大量资源的堆砌下,仅仅一个月时间,三号材料实验室的致密氦生产装置便被改造成了致密氢生产装置。
一个月后。
吕永昌站在材料研发中心三号实验室的主控台前。
全息投影中,实质化光线构筑的“光板”明亮耀眼,映照着周围所有人紧张的神色——吕永昌除外。
他对自己的计算有充分的信心。
实验正式开始。
氢原子喷口从“光板”上方缓缓伸出,将大量的氢原子喷向“光板”。
这些高速飞行的氢原子,在即将与“光板”碰撞的那一刻,被周围的大统一场牢牢锁死在“光板”之上。
此时,如果用微观视角观察,就能轻而易举地观察到,这些氢原子之间还存在着相当大的距离。
但随着实验进入第二阶段,在大统一场控制装置的推动下,氢原子之间的间距飞速缩小。
当它们的间距小于1。5*10^(-15)米时,强相互作用力出现了,一股逐渐强大的力量拉扯着它们相互靠近。
间距继续缩小,当间距小于0。8*10^(-15)米时,强相互作用力的表现形式转换成了斥力,它们尝试着将周边的氢原子推离。
强相互作用力操控装置于此时启动。
通过大统一场,直接对强相互作用力进行干扰。
直至这些氢原子之间的间距缩小至人类所能操控的极限,这个压缩过程才宣告结束。
上述操作往复循环。
随着“光板”之上的致密氢材料面积也开始逐步增大,
一平方微米,一平方厘米,一平方米……