“奥数竞赛本来就不是一般人能参加的。连选拔赛的题目都做不出的人,还参加什么奥数竞赛?我这不收废物!”
一句话,直接让网上的议论声炸了锅。
……
相比外界的热闹,考场上,那些还在坚持的考生们其实也是水深火热。
随着考试时间慢慢流逝。
不少人是一边考试,一边瑟瑟发抖。
有的人脸色发青,咬牙坚持。
有的人两眼发直,呆坐在位置上。
也有的一边流泪一边打着彩稿,然后突然情绪崩溃,用笔在草稿纸上疯狂乱涂。
这些留下的人,大多数是心态比较好的。
可就算他们也快到了极限。
他们只觉得自己过去的荣耀、骄傲、风光,正在被这张考卷肆意摧毁蹂躏。
许多人头一次觉得。
他们可能并非什么学霸。
而是一个智障!
不然的话,为什么竟然连一道题都做不出来?
林尘也觉得自己是个假学霸。
并且开始后悔,之前他大包大揽,既想要抓运动,又想和陈潇潇一起入选奥数国家队的想法是不是有些太天真了。
就算有系统,可系统也不是万能的。
要是他之前能多花点时间在奥数上,说不定就不用像现在这样。
六道题目,竟然还有一道做不出来!
这最后的一道题目到底是什么鬼?
“2077年,一个警察正在一个欧式平面上追捕一名身穿隐形斗篷的小偷。
警察和小偷的起始位置重合。
在追捕进行n回合之后,小偷位于点R,而警察位于点H。
在第n个回合中,以下三件事情依次发生:
小偷在警察不知道的情况下移动到一点R,使得点R和点R之间的距离恰为1。
一个探测设备向警察反馈一个点P。
这个设备唯一能够向警察保证的事情是,点P和点R之间的距离至多为1。
警察被小偷观察到移动到一点H,使得点H和点H之间的距离恰为1。
试问,是否无论小偷如何移动,也无论探测设备反馈了哪些点,警察总能够适当地选择他的移动方式,使得在n回合之后,他能够确保和兔子之间的距离至多是1?”
(该题目改自奥数真题。)