“更早一些的t-j模型认为电子在铜氧面上通过交换自旋为12的激子形成库珀对,可以解释高温超导的d波对称性和电荷自旋分离,但同样没有给出具体的配对机制。”
“旋涨落模型则认为电子通过交换自旋涨落而形成库珀对,在这个框架里,自旋涨落是一种由反铁磁序和电荷密度波耦合而产生的准粒子。”
“自旋涨落模型也能够解释高温超导体中的d波对称性和强关联效应,但遗憾的是,它依然没有给出具体的配对机制。”
“徐云同学。”
在徐云说完这番话后,薛其坤院士举手打断了他:
“听你这说法你这次采用的思路,似乎并不是主流中的一种?”
“没错。”
徐云点了点头,肯定了薛其坤的判断:
“我这次用于描述机理的理论此前并未有人提出过,我将它称之为。陈-徐磁矢势正则理论。”
这一次。
包括一直没有出声的杨老在内,台下的人顿时齐齐一愣。
陈-徐磁矢势正则理论。
简简单单的几个字,包含的信息量似乎有点大啊。
譬如磁矢势。
相对于电流电荷,磁矢势这个物理量的知名度可能要低一点儿。
实际上它是一个旋性矢量,和磁场有关:
已知在稳定磁场中矢量b的散度为零,根据重要失量恒等式任何矢量场的旋度的散度恒为零,因此b可表示为b=▽,矢量场成为矢量磁位,因此得到电流分布的,对做微分运算就可以得到b。
对▽▽=μj化简可得▽^2=-μj,即矢量泊松方程,在直角坐标系下等价为三个标量泊松方程。
非常简单,也非常好理解。
这玩意儿和高温超导之前也存在一定关系,因为在电磁场中运动的电子总是伴随着带一个相位,这个相位其实就是磁矢势。
“。”
随后坐在薛其坤身边的王老想了想,对徐云问道:
“小徐,你继续吧,详细解释一下伱的这个理论。”
徐云见状再次点了点头,这次没有再用ppt了,而是拿起粉笔在一旁的黑板上写起了板书:
“某种意义上来说,超导就像击鼓传花,电子就像小朋友,小朋友坐在自己的位置上没动,所以不会互相碰撞产生电阻,而他们手上传的花就是那个无质量的相位。”
“因此从这个思路切入,可以在紧束缚模型下写出一个规范不变的哈密顿量,也就是uhu=∑jtjcejcj+h其中j=θθj。”
“电子向左和向右跳,会附带一个正负的相位,这就是超导电流的主要来源,如果计算局域电子数n=cc随时间的变化,也就是海森堡方程,以及连续性方程nt+j=0,很容易得到流算符。”
“在临界温度以下,电子配对形成copperpr,并且凝聚到bcs基态——到这一步步骤为止,bcs理论依旧是成立的。”
“然后接下来我的思路是。”
说到这里。
徐云刻意顿了顿:
“对超导体的能隙函数做费米面结构近似。”(见449章,又是一个跨越了400章的伏笔)
早先提及过。
所谓费米面,指的其实是动量空间的等能面。
费米面最早被定义于理想无相互作用的费米气系统中,后来便扩展到了电子模型,近些年常见于固体材料范畴。
它的实质就是三维无限势阱中自由电子的运动,电子对应λ=hp,所以在导体中形成驻波。
接着根据波矢量的定义,就可以确定单个电子所处驻波的波矢量值。
哒哒哒。